Challenges of materials security for the automotive industry
Current issues and outlook

Patrick KIM, VP
Renault Materials Engineering
SUMMARY

01 The context
The future of our business is linked to resources

02 Evaluate the risk
Establish a criticality matrix to know your exposure

03 Develop a materials security strategy
Ensure the robustness of your supply chain

04 Take action
Join forces to increase your leverage

05 Conclusions
... and recommendations
Main messages

- Automobiles are complex systems in terms of the elements contained, and thus highly exposed to materials risk.
 Zn, Ni, Al, Mg, *and then*: Li, Cu, Mn, Co, REE …

- These risks are multi-faceted:
 costs, availability, regulation, geopolitics

- Resource strategies to counter these risks are thus needed at technical, purchasing and public action levels

- Recycling will not be sufficient to meet demand

- Our interest & action must radiate up & downstream, worldwide
01

The context

The future of our business is linked to resources
The context is putting pressure on materials

Resources
- **Strategic metals & elements**
- **Limits on availability**

![Graph showing World Refined Copper Stocks & Prices and Market Balance (Jan 06 - Jun 07)](source: ICSG)

Materials price instability
- **Speculative markets**
- **Supply-demand balance**

![Graph showing price trends for USA and Germany with S$6 (Feb), S$67 (Mar), and S$10 (Mar)]

Rapidly evolving technologies
- **New demand for materials**
- **Constraints on production capacities**

Competitive international context
- **China & India**
- **Monozukuri**

Source: ICSG
Hot spots of our materials security

- **China & India**, and to some extent **Russia** will be major market drivers influencing materials availability & price

- Mining countries are realizing and setting up to use their **geopolitical leverage**; also, **corporate concentration** effects are increasing

- **New technologies** will create temporary but sudden shifts in demand

- **Costs linked to energy** and **externalities such as water & environmental (incl. CO₂) taxes throughout the materials supply chain** are on the verge of increasing drastically & will become a major constraining factor

- **Other national & regional governments** are moving faster /stronger and more pragmatically than the **EU** on their Raw Materials initiatives & policies
Our industries have become material addicts

We have steadily progressed towards an economy based on non-renewable resources

We’re running out of some (key) materials

Non-Fuel Mineral Resources
(Source: USGS Mineral Commodity Surveys 2007)

For materials such as Ga, Nd, In, Ge, Sc, Pt, demand linked to new technologies is expected to exceed current world production by a factor of **1.6 to 6** by 2030

Note: the diagram is based on reserve base & zero-growth demand

Sources: USGS 2007, Rohstoffe für Zukunftstechnologien*, Fraunhofer ISI, 2009
Energy is at the basis of our economy

Our energy comes from dead things
More than $\frac{3}{4}$ fossil fuels – for a long time ahead

Shares of energy sources in world primary demand by scenario

- **2008**
 - Coal
 - Oil
 - Gas
 - Nuclear
 - Hydro
 - Biomass
 - Other renewables

- **Current Policies Scenario 2035**
 - Coal
 - Oil
 - Gas
 - Nuclear
 - Hydro
 - Biomass
 - Other renewables

- **New Policies Scenario 2035**
 - Coal
 - Oil
 - Gas
 - Nuclear
 - Hydro
 - Biomass
 - Other renewables

- **450 Scenario 2035**
 - Coal
 - Oil
 - Gas
 - Nuclear
 - Hydro
 - Biomass
 - Other renewables

Source: World Energy outlook 2010
Major fossil fuel sources are under scrutiny
Peak oil will lead to peak-everything-else

World oil production by type in the New Policies Scenario

- Unconventional oil
- Natural gas liquids
- Total crude oil
- Crude oil - fields yet to be developed or found
- Crude oil - currently producing fields

Source: World Energy outlook 2010
Water stress is already a reality
Evaluate the risk

Establish a criticality matrix to know your exposure
Economic impact of CO₂, energy, water in raw materials will drastically increase by 2020

<table>
<thead>
<tr>
<th>Resource</th>
<th>2020 Expected change (upper/lower)</th>
<th>For R sales of 2.3 Mveh</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 tons CO₂</td>
<td>100 € / ton CO₂ = 606 M€</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 € / m³ H₂O = 194 M€</td>
<td></td>
</tr>
<tr>
<td>300 m³ H₂O</td>
<td>+50% = 172 M€</td>
<td>+50% = 292 M€</td>
</tr>
<tr>
<td></td>
<td>+20% = 69 M€</td>
<td>+20% = 118 M€</td>
</tr>
<tr>
<td>12,5 MWh energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WE energy mix</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

380 M€ to 1070 M€ total impact on materials cost throughout our supply chain

For R sales of 2.3 Mveh
Critical elements for the EU
(EC RM Initiative macro-economical approach, multi/megasectors, July 2010)
China & India will change the balance

Since the early 2000s China has driven a policy to promote OFDI flows under the title of “go global” (zou-chu-qu – literally “go out”)

OFDI = outward foreign direct investment
03

Develop a materials security strategy

Ensure the robustness of your supply chain
Dematerialization: is it a reality…

Source: Prosperity without growth, a report by T. Jackson, UK Sustainable Development Commission, 2009

CO₂ emissions
1980: 1000 g/$
2006: 770 g/$
… or a myth that we need to turn into reality

Source: Prosperity without growth, a report by T. Jackson, UK Sustainable Development Commission, 2009

CO₂ emissions
40% more in 2009 than in 1990 (Kyoto protocol)
Our industries are at a turning point
This will require new business creativity

Material costs:
43% of total production costs, cf. 1.8% energy
(Germany, 2006)

Source: G. Angerer et al., Rohstoffe für Zukunftstechnologien", Fraunhofer ISI, 2009
Criticality analysis & consequences

- Speculative price impacts
- Production bottlenecks
- Trade restrictions
- Externalities (resources, emissions)
- Limits of availability
- ELV materials flows

- Cost of business, COP
- Production continuity
- Geographic availability
- Reduce the footprints
- Need for substitution
- Involvement in 3R loops

DREAM / DIMat – P. Kim

2011-01-27

3R must be at the base of our engineering design practices

34 kg of plastics in the latest Renault models are recycled.

- How far can we go?
- What if everybody does it?
Raw materials risks:
multi-dimensional problems require multi-modal action

- Any weak link in your supply chain constitutes a risk
 ensure that your suppliers have sustainable practices

- Implement resource strategies at technical, purchasing, management and public action levels
 coordinated mobilization is the key

- Recycling will not be sufficient to meet demand
 develop a range of measures

- Our action must radiate up & downstream, worldwide
 coordinate regional action with main industry sectors,
 take good measure of the R/O global sourcing & production,
 develop life-cycle schemes and green CAPEX
Corporate design for sustainability: beyond eco-design
Corporate security calls us to design for sustainability

Know & master stocks & flows

- Find more
- Substitute
- Recycle
- Reduce
- Do without

Aim for a closed system ➔ “3R loops”

Design for materials efficiency
04

Take action

Join forces to increase your leverage
Orientations for solutions

Technical
- Technology choices based on stronger resource intelligence
- LCA-based technical strategies for improved materials efficiency
- R&D to promote substitution and recycling
- Green CAPEX

Others
- Mobilize your community
- Long-term contracts and sustainability pacts
- Global design of our sourcing / supply chain
- Partnerships and leverage through associations
Consequences on R&D management

- Build a more integrated picture to model the future with *scenarios* for the mid & long term
- Step up *corporate* implication in the public domain, to solve “big” problems
- Re-define *Design for Sustainability* to include long-term business continuity
Our product strategy – such as Renault EV – can not be dissociated from a resource security strategy

Renault, a people-centric and innovative Company, offering sustainable mobility for all
Conclusions

... and recommendations
Conclusions & recommendations

- Recycling schemes must be considered in the framework of LCA and stocks & flows— but **recycling will not be sufficient to meet demand**

- Know & control materials costs & **risks** (3 Rs, substitution & diversification) within a context of competition on the materials market

- Know the environmental impacts and factor **externalities** into the evaluation of future cost evolutions

- Reinforce corporate as well as government **R&D** to improve performance **for materials efficiency**

- Develop integrated downstream business concepts, and launch stronger **industry partnerships with a more pronounced long-term component**
The future of our business is linked to resources

Energy

Minerals

Water

Source: Petroconsultants, Materials in the economy, USGS 1221-508 (2002), & UNEP
Thank you for your attention
Recommended readings

- L. Brown, Plan B 4.0, 2009
- T. Graedel & E. van der Voet, eds., Linkages of Sustainability, MIT Press, 2010
- J. Morrison et al., Water Scarcity & Climate Change: Growing Risks for Businesses & Investors, the Pacific Institute, A Ceres Report, 2009